16,702 research outputs found

    Vortex-line solitons in a periodically modulated Bose gas

    Full text link
    We study the nonlinear excitations of a vortex-line in a Bose-Einstein condensate trapped in a one-dimensional optical lattice. We find that the classical Euler dynamics of the vortex results in a description of the vortex line in terms of a (discrete) one-dimensional Gross-Pitaevskii equation, which allows for both bright and gray soliton solutions. We discuss these solutions in detail and predict that it is possible to create vortex-line solitons with current experimental capabilities.Comment: minor changes, updated/corrected references, 4 pages, 3 figure

    Birth of Closed Strings and Death of Open Strings during Tachyon Condensation

    Full text link
    The tremendous progress achieved through the study of black holes and branes suggests that their time dependent generalizations called Spacelike branes (S-branes) may prove similarly useful. An example of an established approach to S-branes is to include a string boundary interaction and we first summarize evidence for the death of open string degrees of freedom for the homogeneous rolling tachyon on a decaying brane. Then, we review how to extract the flat S-brane worldvolumes describing the homogeneous rolling tachyon and how large deformations correspond to creation of lower dimensional strings and branes. These S-brane worldvolumes are governed by S-brane actions which are on equal footing to D-brane actions, since they are derived by imposing conformality on the string worldsheet, as well as by analyzing fluctuations of time dependent tachyon configurations. As further examples we generalize previous solutions of the S-brane actions so as to describe multiple decaying and nucleating closed fundamental strings. Conceptually S-brane actions are therefore different from D-brane actions and can provide a description of time dependent strings/branes and possibly their interactions.Comment: 15 pages, 7 eps figures; invited review for Modern Physics Letters A, including new solutions for S-brane actions. v2 published version, minor typos correcte

    Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy

    Get PDF
    The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by a Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced

    Lattice Heavy Quark Effective Theory and the Isgur-Wise function

    Get PDF
    We compute the Isgur-Wise function using heavy quark effective theory formulated on the lattice. The non-relativistic kinetic energy term of the heavy quark is included to the action as well as terms remaining in the infinite quark mass limit. The classical velocity of the heavy quark is renormalized on the lattice and we determine the renormalized velocity non-perturbatively using the energy-momentum dispersion relation. The slope parameter of the Isgur-Wise function at zero recoil is obtained at ÎČ=6.0\beta=6.0 on a 243×4824^3\times 48 lattice for three values of mQm_{Q}.Comment: 14 pages of A4 format and 8 figures in one uuencoded postscript fil

    Radial Correlations between two quarks

    Get PDF
    In nuclear many-body problems the short-range correlation between two nucleons is well described by the corresponding correlation in the {two}-body problem. Therefore, as a first step in any attempt at an analogous description of many-quark systems, it is necessary to know the two-quark correlation. With this in mind, we study the light quark distribution in a heavy-light meson with a static heavy quark. The charge and matter radial distributions of these heavy-light mesons are measured on a lattice with a light quark mass about that of the strange quark. Both distributions can be well fitted upto r approx 0.7 fm with the exponential form w_i^2(r), where w_i(r)=A exp(-r/r_i). For the charge(c) and matter(m) distributions r_c approx 0.32(2) fm and r_m \approx 0.24(2) fm. We also discuss the normalisation of the total charge (defined to be unity in the continuum limit) and matter integrated over all space, finding 1.30(5) and 0.4(1) respectively for a lattice spacing approx 0.17 fm.Comment: 8 pages, 3 ps figure

    A lattice calculation of the pion form factor with Ginsparg-Wilson-type fermions

    Full text link
    Results for Monte Carlo calculations of the electromagnetic vector and scalar form factors of the pion in a quenched simulation are presented. We work with two different lattice volumes up to a spatial size of 2.4 fm at a lattice spacing of 0.148 fm. The pion form factors in the space-like region are determined for pion masses down to 340 MeV.Comment: REVTeX 4, 8 pages, 9 figures, 4 tables; final versio

    Complete solution for unambiguous discrimination of three pure states with real inner products

    Get PDF
    Complete solutions are given in a closed analytic form for unambiguous discrimination of three general pure states with real mutual inner products. For this purpose, we first establish some general results on unambiguous discrimination of n linearly independent pure states. The uniqueness of solution is proved. The condition under which the problem is reduced to an (n-1)-state problem is clarified. After giving the solution for three pure states with real mutual inner products, we examine some difficulties in extending our method to the case of complex inner products. There is a class of set of three pure states with complex inner products for which we obtain an analytical solution.Comment: 13 pages, 3 figures, presentation improved, reference adde

    Synthesis of racemic and chiral BEDT-TTF derivatives possessing hydroxy groups and their achiral and chiral charge transfer complexes

    Get PDF
    Chiral molecular crystals built up by chiral molecules without inversion centers have attracted much interest owing to their versatile functionalities related to optical, magnetic, and electrical properties. However, there is a difficulty in chiral crystal growth due to the lack of symmetry. Therefore, we made the molecular design to introduce intermolecular hydrogen bonds in chiral crystals. Racemic and enantiopure bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivatives possessing hydroxymethyl groups as the source of hydrogen bonds were designed. The novel racemic trans-vic-(hydroxymethyl)(methyl)-BEDT-TTF 1, and racemic and enantiopure trans-vic-bis(hydroxymethyl)-BEDT-TTF 2 were synthesized. Moreover, the preparations, crystal structure analyses, and electrical resistivity measurements of the novel achiral charge transfer salt Ξ21-[(S,S)-2]3[(R,R)-2]3(ClO4)2 and the chiral salt α’-[(R,R)-2]ClO4(H2O) were carried out. In the former Ξ21-[(S,S)-2]3[(R,R)-2]3(ClO4)2, there are two sets of three crystallographically independent donor molecules [(S,S)-2]2[(R,R)-2] in a unit cell, where the two sets are related by an inversion center. The latter α’-[(R,R)-2]ClO4(H2O) is the chiral salt with included solvent H2O, which is not isostructural with the reported chiral salt α’-[(S,S)-2]ClO4 without H2O, but has a similar donor arrangement. According to the molecular design by introduction of hydroxy groups and a ClO4− anion, many intermediate-strength intermolecular hydrogen bonds (2.6–3.0 Å) were observed in these crystals between electron donor molecules, anions, and included H2O solvent, which improve the crystallinity and facilitate the extraction of physical properties. Both salts are semiconductors with relatively low resistivities at room temperature and activation energies of 1.2 ohm cm with Ea = 86 meV for Ξ21-[(S,S)-2]3[(R,R)-2]3(ClO4)2 and 0.6 ohm cm with Ea = 140 meV for α'-[(R,R)-2]2ClO4(H2O), respectively. The variety of donor arrangements, Ξ21 and two kinds of α’-types, and their electrical conductivities of charge transfer complexes based upon the racemic and enantiopure (S,S)-2, and (R,R)-2 donors originates not only from the chirality, but also the introduced intermolecular hydrogen bonds involving the hydroxymethyl groups, perchlorate anion, and the included solvent H2O
    • 

    corecore